dehumidifier 1: Dehumidifier project

I recently finished building the frame of a shed, and covered it with temporary cladding (MDF and plastic) to protect it during the winter until I have more time and money next year to continue with it.

There is a small lake starting to grow in the shed. I don’t think it’s coming up from underneath the soil, and the door end of the shed is covered in plastic to stop rain coming in, so I think the lake is forming from condensation. The air in the shed is basically dumping water on the inner walls of the shed and that water is then rolling down and converging in a large pool.

Because the shed was being built to house a lab, I had planned on building a dehumidifier at some point anyway (I like to build things, even if it might be easy to buy them), but this is encouraging me to get on with it now and build it early.

So over the last week, I bought a half-kilogram (500g) of desiccant crystals, which just arrived, and I’ve started designing the machine.

I’m using the idea of a “desiccant wheel” – a constantly turning wheel where most of it is adsorbing water, and the final part is being dried of its water and regenerated, with the water being blown out as damp air, and either collected in a jar, or dumped outside (what I’ll be doing).

I designed a small wheel last night and started it printing. It’s 60mm in radius (12cm diameter), so really small for this purpose, but as this is my first time making a dehumidifier, I want to make something small and test it, before making a bigger one.

You can see from the image that the wheel is segmented into six parts. The idea is that the wheel will revolve about once an hour, with each segment getting about ten minutes of that hour with hot air being blown through it while cold air is blowing through the rest.

Heat encourages desiccant crystals to dry, with the collected water evaporating and making the hot air damp. That hot air will be blown into a tube that leads outside the shed. Eventually, I may use the water for an indoor gardening setup, but for now, I’ll just get rid of it.

The 5 remaining segments will have cold air blowing through them, with the dampness in that air being adsorbed onto the surface of the crystals, getting those crystals ready for their next ten minute session in the hot air drying part.

I’m waiting now for the heating element to arrive so I can design the fan section and the electronics to keep the temperature constant.

When the hardware is finished, I’ll then need to start testing it with different temperatures, different fan speeds, different wheel speeds, to see how to get the most moisture out as quickly as possible.

I’ll put my design up on Thingiverse as soon as I’m finished and have a working system, and may even start selling prints if this works out.

I’m thinking that I may have two versions – one which is tuned so you just turn it on and it gets to work, and another which is smart enough to measure relative humidity and work towards a specified value.

Leave a Reply

%d bloggers like this: